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Abstract: In this paper, an attractive approach for teaching genetic algorithm (GA) is presented. This approach is based 

primarily on using MATLAB in implementing the genetic operators: initialization, crossover, mutation, evaluation and 

selection. A detailed illustrative examples is presented to demonstrate that how to solve Traveling Salesman Problem 

(TSP) and Drawing the largest possible circle in a space of stars without enclosing any of them.  
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I. INTRODUCTION 

Genetic algorithms (GA’s) are adaptive methods that may 

be use to solve search and optimization problems. They 

are based on the genetic processes of biological organisms. 

Over many generations, natural populations evolve 

according to the principles of natural selection and 

"survival" of the fittest. By mimicking this process, 

genetic algorithms are able to "evolve" solutions to real 

world problems, if they have been suitably encoded. The 

basic principles of Gas were first laid down rigorously [1]. 
 

GA’s work with a population of "individuals", each 

representing a possible solution to a given problem. Each 

individual is assigned a "fitness score" according to how 

good a solution to the problem it is. The highly-fit 

individuals are given opportunities to "reproduce", by 

"cross breeding" with other individuals in the population. 

This produces new individuals as "offspring", which share 

some features taken from each "parent". The least fit 

members of the population are less likely to get selected 

for reproduction, and so "die out. A whole new population 

of possible solutions is thus produced by selecting the best 

individuals from the current "generation", and mating 

them to produce a new set of individuals. This new 

generation contains a higher proportion of the 

characteristics possessed by the good members of the 

previous generation. In this way, over many generations, 

good characteristics are spread throughout the population. 

By favouring the mating of the more fit individuals, the 

most promising areas of the search space are explored. If 

the GA has been designed well, the population will 

converge to an optimal solution to the problem [2]. 

II. METHODOLOGY  

The most common type of genetic algorithm works like 

this: a population is created with a group of individuals 

created randomly. The individuals in the population are 

then evaluated. The evaluation function is provided by the 

programmer and gives the individuals a score based on 

how well they perform at the given task. Two individuals 

are then selected based on their fitness, the higher the 

fitness, the higher and the chance of being selected. These 

individuals then "reproduce" to create one or more 

offspring, after which the offspring are mutated randomly. 

This continues until a suitable solution has been found or a 

certain number of generations have passed, depending on  

 

 
the needs of the programmer [4]. The general form of 

genetic algorithms is presented in Figure 1. The contents 

of the blocks in the flow chart are explained in greater 

details in the next paragraphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. INITIALIZATION 

In the initialization, one generates, often randomly, a 

population from which new generations are formed. At 

this point one also needs to de- fine the terminating 

condition so that the algorithm stops running once an 

acceptable solution is found [5]. 

IV.  CROSSOVER 

Crossover is one of the genetic operator used in producing 

new candidates using the features of the existing ones. The 

crossover procedure is illustrated in Figure 2 below. 
 

The crossover procedure consists of three parts. First one 

selects two parents from the population. Then the 

crossover points are selected. The selection of crossover 

points is done at random, usually so that the distribution 

from which the points are drawn from is uniform. In 

Figure 2 two crossover points are marked with dotted 

lines. Once the points are defined two off springs are 

generated by interchanging the values between the two 

parents as illustrated in the figure. In the genetic algorithm 

          Figure 1: Flow chart of a general form of 
the genetic algorithm.      
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crossover is the operator that spreads the advantageous 

characteristics of the members around the population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. MUTATION 

In the genetic algorithm mutation is the operator that 

causes totally new characteristics to appear in the 

members of the population. In many cases the mutations, 

of course, result in off springs that are worse than the other 

members, but sometimes the result has such characteristics 

that make it better.  
 

Figure 3 below demonstrates the mutation operation. First, 

one selects a member from the population to be mutated 

and a point of mutation. Then the values at the point of 

mutation is replaced by another value that is picked 

randomly from the set of all possible values [8]. 
 

 

 

 

 

 

 

 

 
 

 

VI. EVALUATION AND SELECTION 

After the population is manipulated using the genetic 

operators, the fitness of each of the new off springs is 

evaluated. For this one needs to have a numerical function 

and fitness function. In the selection the weakest 

individuals in the population are eliminated. The fit off 

springs survive to the next generation. 

VII. MATLAB IMPLEMENTATION 

Initialization,  For GA, a binary representation is 

needed to describe each individual in the population of 

interest. Each individual is made up of a sequence of 

binary bits (0 and 1). Let string length and pop size denote 

the length of the binary sequence and the number of 

individuals involved in the population. Each individual 

uses a string codification of the form shown in Fig. 4. 

Using MATLAB, the whole data structure of the 

population is implemented by a matrix of size pop size× 

(stringlength+2): 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The first string length column contains the bits which 

characterize the binary codification of the real variable x. 

The strings are randomly generated, but a test must be 

made to ensure that the corresponding values belong to the 

function domain. The crossover and mutation operators 

will be applied on this string length-bit sub-string. The 

(stringlength+1)-th and (stringength+2)-th columns 

contain the real x value, used as auxiliary information in 

order to check the algorithm’s evolution, and the 

corresponding f (x), which is assumed to be the fitness 

value of the string in this case. Then the initialization 

process can be completed using the code in the. In the 

above routine, we first generate the binary bits randomly, 

and then replace the (stringlength+1)-th and 

(stringlength+2)-th columns with real x values and 

objective function values, where fun is the objective 

function, usually denoted by a .m file. 

Crossover takes two individuals parent1, parent2, and 

produces two new individuals child1, child2. Let pc be the 

probability of crossover, then the crossover operator can 

be implemented as the code in the. At the top of the 

crossover routine, we determine whether we are going to 

perform crossover on the current pair of parent 

chromosomes. Specifically, we generate a random number 

and compare it with the probability parameter pc. If the 

random number is less than pc, a crossover operation is 

performed; otherwise, no crossover is performed and the 

parent individuals are returned. If a crossover operation is 

called for, a crossing point (C point) is selected between 1 

and string length [7]. The crossing point (C point) is 

selected in the function round, which returns a 

pseudorandom integer between specified lower and upper 

limits (between 1 and string length −1). Finally, the partial 

exchange of crossover is carried out and the real values 

and fitness of the new individuals’ child1, child2, are 

computed. 

Mutation alters one individual, parent, to produce a single 

new individual, child. Let pm be the probability of 

mutation, then as in the crossover routine, we first 

determine whether we are going to perform mutation on 

    Figure 2: Crossover procedure. 

 

Figure 3: Mutation 

 

Figure 4: Binary string representation for the 
optimization of a one-variable function. 
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the current pair of parent chromosomes [5]. If a mutation 

operation is called for, we select a mutating point m point, 

and then change a true to a false (1 to 0) or vice versa. The 

real value and fitness of the new individual child are then 

computed as code in the. 

The selection operator determines which of the individuals 

will survive and continue in the next generation. The 

selection operator implemented here is roulette wheel 

selection and this is perhaps the simplest way to 

implement selection. We first calculate the probabilities of 

each individual being selected. Then the partial sum of the 

probabilities is accumulated in the vector prob. We also 

generate a vector rns containing normalized random 

numbers, by comparing the elements of the two vectors 

rns and prob, we decide the individuals that will take part 

in the new population as the code in the. 

VIII. GA PARAMETER TUNING 

There are three parameters related to the implementation 

of the genetic algorithm that must be tuned before the 

algorithm is used.  These parameters are crossover 

probability, mutation probability ,and the number of 

generations to be produced Crossover and mutation 

probability effect on how the population evolves in time, 

and the number of generation must be chosen so that the 

optimal, or at least a good one, solution is found but not 

too many generations are produced in vain [6]. 

Crossover probability, In order to study the effect of 

crossover probability on the evolution, the algorithm is run 

with different crossover probabilities ranging from 0.2 to 

1.0. For these runs the mutation probability is equal to 0.4, 

and the maximum fitness for each generation is traced. 

The results are shown in Figure 5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 5 it can be seen that with all the values of 

cross over probability the evolution converges pretty 

nicely. Even though there are some differences between 

the runs, the time of convergence seems to be mostly a 

matter of luck. With the crossover probabilities closer to 

one the evolution converges slightly faster, and therefore, 

a value of0.8 is chosen to be the crossover probability with 

which the final results are generated. A probability of 1.0 

is not selected because it seems to behave somewhat 

chaotically even though it converges fastest [11]. 

Mutation probability, the effect of mutation probability 

Is studied similarly to that for crossover probability in the 

previous subsection [10]. The algorithm is run with five 

different mutation probabilities from ranging 0.2 to 1.0. 

The maximum fitness as a function of generation is 

presented in Figure 6 for all of the five runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 shows that the evolution of the population 

significantly depends on the mutation probability. With 

high mutation rate the better values of fitness are reached 

faster but, on the other hand, the population acts 

chaotically and the maximum is not reached in the later 

generations. This shows that if the mutation probability is 

very high, then some of the advantageous characteristics 

of the generations are eliminated by mutation and the 

fitness of the population does not converge. With lower 

values of mutation probability the fitness evolves more 

slowly but the population do not act chaotically. 

Therefore, the requirement of convergence is met. A good 

compromise between fast evolution and nice convergence 

seems to be at a mutation probability of 0.4. Number of 

generations, the number of generation to be produced is 

selected so that the algorithm almost always converges to 

a good value of fitness. From Figure 5 and Figure 6 it can 

be seen that with reasonable values of crossover and 

mutation probability the algorithm has easily converged 

before the 300th generation [4]. To be absolutely sure 

about the convergence the algorithm is run over 400 

generations. Such high confidence margin can be selected 

because the computations for a system of this size do not 

take very long for a standard computer of today. For larger 

systems a less conservative approach may be selected. 

IX. RESULT 

Traveling Salesman Problem (TSP) has been an interesting 

problem for a long time in classical optimization 

techniques which are based on linear and nonlinear 

programming. TSP can be described as follows: Given a 

number of cities to visit and their distances from all other 

cities know, an optimal travel route has to be found so that 

each city is visited one and only once with the least 

possible distance travelled. This is a simple problem with 

handful of cities but becomes complicated as the number 

increases. 
 

First example, Traveling Salesman Problem (TSP) 
 

First optimization: 

Figure 5: Evolution of fitness with different crossover 
probabilities ranging from 0.2 to 1.0. 

 

Figure 6: Evolution of fitness with different mutation 
probabilities ranging from 0.2 to 1.0. 
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Second optimization: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

The first and second optimization show that when the 

number of iteration increase, the total distance of selenium 

decrease.  
 

Second example, draw the largest possible circle in a 

space of stars without enclosing any of them. 
 

First analysing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first and second analysing reveal that the circle would 

be big enough as well as accurate when the number of 

iteration increase.  

Second analysing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X. CONCLUSION 

The major advantage of genetic algorithms is their 

flexibility and robustness as a global search method. They 

are "weak methods" which do not use gradient information 

and make relatively few assumptions about the problem 

being solved. They can deal with highly nonlinear 

problems and non-differentiable functions as well as 

functions with multiple local optima and readily amenable 

to implementation, which renders them usable in real-time. 

This approach is based primarily on using MATLAB in 

implementing the genetic operators. Genetic algorithms 

also be extremely useful if applied in conjunction with 

neural networks. 
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