
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41170 326

Genetic Algorithm by using MATLAB Program

Mashal Alenazi

University of Bridgeport, Biomedical Engineering, USA

Abstract: In this paper, an attractive approach for teaching genetic algorithm (GA) is presented. This approach is based

primarily on using MATLAB in implementing the genetic operators: initialization, crossover, mutation, evaluation and

selection. A detailed illustrative examples is presented to demonstrate that how to solve Traveling Salesman Problem

(TSP) and Drawing the largest possible circle in a space of stars without enclosing any of them.

Keywords: Genetic, Matlab, Algorithm, Mutation.

I. INTRODUCTION

Genetic algorithms (GA’s) are adaptive methods that may

be use to solve search and optimization problems. They

are based on the genetic processes of biological organisms.

Over many generations, natural populations evolve

according to the principles of natural selection and

"survival" of the fittest. By mimicking this process,

genetic algorithms are able to "evolve" solutions to real

world problems, if they have been suitably encoded. The

basic principles of Gas were first laid down rigorously [1].

GA’s work with a population of "individuals", each

representing a possible solution to a given problem. Each

individual is assigned a "fitness score" according to how

good a solution to the problem it is. The highly-fit

individuals are given opportunities to "reproduce", by

"cross breeding" with other individuals in the population.

This produces new individuals as "offspring", which share

some features taken from each "parent". The least fit

members of the population are less likely to get selected

for reproduction, and so "die out. A whole new population

of possible solutions is thus produced by selecting the best

individuals from the current "generation", and mating

them to produce a new set of individuals. This new

generation contains a higher proportion of the

characteristics possessed by the good members of the

previous generation. In this way, over many generations,

good characteristics are spread throughout the population.

By favouring the mating of the more fit individuals, the

most promising areas of the search space are explored. If

the GA has been designed well, the population will

converge to an optimal solution to the problem [2].

II. METHODOLOGY

The most common type of genetic algorithm works like

this: a population is created with a group of individuals

created randomly. The individuals in the population are

then evaluated. The evaluation function is provided by the

programmer and gives the individuals a score based on

how well they perform at the given task. Two individuals

are then selected based on their fitness, the higher the

fitness, the higher and the chance of being selected. These

individuals then "reproduce" to create one or more

offspring, after which the offspring are mutated randomly.

This continues until a suitable solution has been found or a

certain number of generations have passed, depending on

the needs of the programmer [4]. The general form of

genetic algorithms is presented in Figure 1. The contents

of the blocks in the flow chart are explained in greater

details in the next paragraphs.

III. INITIALIZATION

In the initialization, one generates, often randomly, a

population from which new generations are formed. At

this point one also needs to de- fine the terminating

condition so that the algorithm stops running once an

acceptable solution is found [5].

IV. CROSSOVER

Crossover is one of the genetic operator used in producing

new candidates using the features of the existing ones. The

crossover procedure is illustrated in Figure 2 below.

The crossover procedure consists of three parts. First one

selects two parents from the population. Then the

crossover points are selected. The selection of crossover

points is done at random, usually so that the distribution

from which the points are drawn from is uniform. In

Figure 2 two crossover points are marked with dotted

lines. Once the points are defined two off springs are

generated by interchanging the values between the two

parents as illustrated in the figure. In the genetic algorithm

 Figure 1: Flow chart of a general form of
the genetic algorithm.

-

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41170 327

crossover is the operator that spreads the advantageous

characteristics of the members around the population.

V. MUTATION

In the genetic algorithm mutation is the operator that

causes totally new characteristics to appear in the

members of the population. In many cases the mutations,

of course, result in off springs that are worse than the other

members, but sometimes the result has such characteristics

that make it better.

Figure 3 below demonstrates the mutation operation. First,

one selects a member from the population to be mutated

and a point of mutation. Then the values at the point of

mutation is replaced by another value that is picked

randomly from the set of all possible values [8].

VI. EVALUATION AND SELECTION

After the population is manipulated using the genetic

operators, the fitness of each of the new off springs is

evaluated. For this one needs to have a numerical function

and fitness function. In the selection the weakest

individuals in the population are eliminated. The fit off

springs survive to the next generation.

VII. MATLAB IMPLEMENTATION

Initialization, For GA, a binary representation is

needed to describe each individual in the population of

interest. Each individual is made up of a sequence of

binary bits (0 and 1). Let string length and pop size denote

the length of the binary sequence and the number of

individuals involved in the population. Each individual

uses a string codification of the form shown in Fig. 4.

Using MATLAB, the whole data structure of the

population is implemented by a matrix of size pop size×

(stringlength+2):

The first string length column contains the bits which

characterize the binary codification of the real variable x.

The strings are randomly generated, but a test must be

made to ensure that the corresponding values belong to the

function domain. The crossover and mutation operators

will be applied on this string length-bit sub-string. The

(stringlength+1)-th and (stringength+2)-th columns

contain the real x value, used as auxiliary information in

order to check the algorithm’s evolution, and the

corresponding f (x), which is assumed to be the fitness

value of the string in this case. Then the initialization

process can be completed using the code in the. In the

above routine, we first generate the binary bits randomly,

and then replace the (stringlength+1)-th and

(stringlength+2)-th columns with real x values and

objective function values, where fun is the objective

function, usually denoted by a .m file.

Crossover takes two individuals parent1, parent2, and

produces two new individuals child1, child2. Let pc be the

probability of crossover, then the crossover operator can

be implemented as the code in the. At the top of the

crossover routine, we determine whether we are going to

perform crossover on the current pair of parent

chromosomes. Specifically, we generate a random number

and compare it with the probability parameter pc. If the

random number is less than pc, a crossover operation is

performed; otherwise, no crossover is performed and the

parent individuals are returned. If a crossover operation is

called for, a crossing point (C point) is selected between 1

and string length [7]. The crossing point (C point) is

selected in the function round, which returns a

pseudorandom integer between specified lower and upper

limits (between 1 and string length −1). Finally, the partial

exchange of crossover is carried out and the real values

and fitness of the new individuals’ child1, child2, are

computed.

Mutation alters one individual, parent, to produce a single

new individual, child. Let pm be the probability of

mutation, then as in the crossover routine, we first

determine whether we are going to perform mutation on

 Figure 2: Crossover procedure.

Figure 3: Mutation

Figure 4: Binary string representation for the
optimization of a one-variable function.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41170 328

the current pair of parent chromosomes [5]. If a mutation

operation is called for, we select a mutating point m point,

and then change a true to a false (1 to 0) or vice versa. The

real value and fitness of the new individual child are then

computed as code in the.

The selection operator determines which of the individuals

will survive and continue in the next generation. The

selection operator implemented here is roulette wheel

selection and this is perhaps the simplest way to

implement selection. We first calculate the probabilities of

each individual being selected. Then the partial sum of the

probabilities is accumulated in the vector prob. We also

generate a vector rns containing normalized random

numbers, by comparing the elements of the two vectors

rns and prob, we decide the individuals that will take part

in the new population as the code in the.

VIII. GA PARAMETER TUNING

There are three parameters related to the implementation

of the genetic algorithm that must be tuned before the

algorithm is used. These parameters are crossover

probability, mutation probability ,and the number of

generations to be produced Crossover and mutation

probability effect on how the population evolves in time,

and the number of generation must be chosen so that the

optimal, or at least a good one, solution is found but not

too many generations are produced in vain [6].

Crossover probability, In order to study the effect of

crossover probability on the evolution, the algorithm is run

with different crossover probabilities ranging from 0.2 to

1.0. For these runs the mutation probability is equal to 0.4,

and the maximum fitness for each generation is traced.

The results are shown in Figure 5 below.

From Figure 5 it can be seen that with all the values of

cross over probability the evolution converges pretty

nicely. Even though there are some differences between

the runs, the time of convergence seems to be mostly a

matter of luck. With the crossover probabilities closer to

one the evolution converges slightly faster, and therefore,

a value of0.8 is chosen to be the crossover probability with

which the final results are generated. A probability of 1.0

is not selected because it seems to behave somewhat

chaotically even though it converges fastest [11].

Mutation probability, the effect of mutation probability

Is studied similarly to that for crossover probability in the

previous subsection [10]. The algorithm is run with five

different mutation probabilities from ranging 0.2 to 1.0.

The maximum fitness as a function of generation is

presented in Figure 6 for all of the five runs.

Figure 6 shows that the evolution of the population

significantly depends on the mutation probability. With

high mutation rate the better values of fitness are reached

faster but, on the other hand, the population acts

chaotically and the maximum is not reached in the later

generations. This shows that if the mutation probability is

very high, then some of the advantageous characteristics

of the generations are eliminated by mutation and the

fitness of the population does not converge. With lower

values of mutation probability the fitness evolves more

slowly but the population do not act chaotically.

Therefore, the requirement of convergence is met. A good

compromise between fast evolution and nice convergence

seems to be at a mutation probability of 0.4. Number of

generations, the number of generation to be produced is

selected so that the algorithm almost always converges to

a good value of fitness. From Figure 5 and Figure 6 it can

be seen that with reasonable values of crossover and

mutation probability the algorithm has easily converged

before the 300th generation [4]. To be absolutely sure

about the convergence the algorithm is run over 400

generations. Such high confidence margin can be selected

because the computations for a system of this size do not

take very long for a standard computer of today. For larger

systems a less conservative approach may be selected.

IX. RESULT

Traveling Salesman Problem (TSP) has been an interesting

problem for a long time in classical optimization

techniques which are based on linear and nonlinear

programming. TSP can be described as follows: Given a

number of cities to visit and their distances from all other

cities know, an optimal travel route has to be found so that

each city is visited one and only once with the least

possible distance travelled. This is a simple problem with

handful of cities but becomes complicated as the number

increases.

First example, Traveling Salesman Problem (TSP)

First optimization:

Figure 5: Evolution of fitness with different crossover
probabilities ranging from 0.2 to 1.0.

Figure 6: Evolution of fitness with different mutation
probabilities ranging from 0.2 to 1.0.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41170 329

Second optimization:

The first and second optimization show that when the

number of iteration increase, the total distance of selenium

decrease.

Second example, draw the largest possible circle in a

space of stars without enclosing any of them.

First analysing

The first and second analysing reveal that the circle would

be big enough as well as accurate when the number of

iteration increase.

Second analysing

X. CONCLUSION

The major advantage of genetic algorithms is their

flexibility and robustness as a global search method. They

are "weak methods" which do not use gradient information

and make relatively few assumptions about the problem

being solved. They can deal with highly nonlinear

problems and non-differentiable functions as well as

functions with multiple local optima and readily amenable

to implementation, which renders them usable in real-time.

This approach is based primarily on using MATLAB in

implementing the genetic operators. Genetic algorithms

also be extremely useful if applied in conjunction with

neural networks.

ACKNOWLEDGMENT

I would like to knowledge Prof. Prabir Patra Head of

Department of Biomedical Engineering, and Prof. Hassan

Bajwa Associate Professor, Electrical Engineering,

University of Bridgeport for their support and efforts with

me.

REFERENCES
[1] Awad, M.M., 2012. A new geometric model for clustering high resolution

satellite images. Int. J. Remote Sens. 33, 5819–5838.

[2] Erbaş, M., & Bıyıkoğlu, A. (2015). Design and multi-objective optimization

of organic Rankine turbine. International Journal of Hydrogen Energy,

40(44), 15343-15351. Doi 10.1016/j.ijhydene.2015.04.143.

[3] Farooji, N. R., Vatani, A., & Mokhtari, S. (2010). Kinetic simulation of

oxidative coupling of methane over perovskite catalyst by genetic algorithm:

Mechanistic aspects. Journal of Natural Gas Chemistry, 19(4), 385-392. doi:

10.1016/s1003-9953(09)60084-0.

[4] Grefenstette, J.J., 1986. Optimization of control parameters genetic

algorithms. IEEE Trans. Syst. Man Cybern. 16, 122–128.

[5] Gu, J., Gu, X., & Gu, M. (2009). A novel parallel quantum genetic algorithm

for stochastic job shop scheduling. Journal of Mathematical Analysis and

Applications, 355(1), 63-81. doi: 10.1016/j.jmaa.2008.12.065.

 [6] J. Gu, X.S. Gu, B. Jiao, A quantum genetic based scheduling algorithm for

stochastic flow shop scheduling problem with random breakdown, in:

Proceeding of the 17th IFAC World Congress, 2008, pp. 63–68.

[7] Kamali Shahri M, Alavi M. Investigation of Kinetic Model of Oxidative

Coupling of Methane over Mn/Na2O3/SiO Catalyst [M.Sc. thesis], Iran

University of Science & Technology, 2007.

[8] K.H. Han, K.H. Park, C.H. Lee, J.H. Kin, Parallel quantum-inspired genetic
algorithm for combinatorial optimization problem, in: Proceedings of the 2001

IEEE Congress on Evolutionary Computation, Seoul, Korea, May 2001, pp. 1422–1429.
[9] Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Silpasup K,

Praserthdam P. Chem Eng J, 2005, 115(1-2): 63.

[10] S. Baluja, Structure and performance of fine-grain parallelism in genetic

search, in: Proceedings of the Fifth International Conference on Genetic

Algorithms, Morgan Kaufmann, 1993, pp. 155–162.

[11] Wang, T.-S., Yu, T.-T., Lee, S.-T., Peng, W.-F., Lin, W.-L., & Li, P.-L.

(2014). MATLAB code to estimate landslide volume from single remote

sensed image using genetic algorithm and imagery similarity measurement.

Computers & Geosciences, 70, 238-247. doi:10.1016/j.cageo.2014.06.004.

